
-

-
-
-
-

-

-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-

-
-
-
-
-

-
-

Course code: SCALA_INTRO
The graduate will be thoroughly familiar with OOP and functional techniques and their use in a strongly typed language.
The course starts with the basic constructs of the language, continues with OOP, then functional transformations, the
type system of the language, and ends with asynchronous programming.

Required initial knowledge:
The course assumes knowledge of any other programming language and the basics of algorithmization.

Teaching methods:
Interpretation with presentation
Practical demonstrations on small pieces of code, so-called "boards" or scratches in InteliJ Idea
Small exercises to test what has just been explained
Large independent tasks from the thematic unit evaluated individually for each student (with advice on how to
proceed)

Study materials:
Presentation of the subject matter in printed or online form.

Syllabus:

Installation of necessary tools/Scala and introduction
Scala-cli installation
Scala in InteliJ Idea (Scala plugin)
What is Scala, a small sample of the aims and direction of the course, also with practical examples
Creating a project

Basic constructions of the language and an introduction to types
Mutable vs immutable variables - the immutable principle
Basic types: numeric, strings, truth values
Terms and cycles
For cycle that returns a result, theory of expressions - what is an expression and what is not
Functions, recursion, tail recursion
String interpolation
Tuple type, "breaking" into variables, pattern matching
Type option as a one-element collection, chaining options in the for loop, Option(null)
List/Seq/Vector/Set/Map and operations on them
Mutable variants of containers

Operations on collections
foreach, map, flatMap
recursive counting with collections, foldLeft, sum, reduce
find, headOption, filter, exists, contains, collect, groupBy, mkString

OOP in Scala
Class and its attributes, constructor, companion object and apply
case class, copy method, pattern matching
Traits and multiple inheritance
Anonymous classes
sealed trait and enumerations

More advanced constructions of the language
Higher functions, function as parameter and return value
When is the code actually called/evaluated?

Language Scala - programming I

GOPAS Praha GOPAS Brno GOPAS Bratislava

Kodaňská 1441/46 Nové sady 996/25 Dr. Vladimíra Clementisa 10

101 00 Praha 10 602 00 Brno Bratislava, 821 02

Tel.: +420 234 064 900-3 Tel.: +420 542 422 111 Tel.: +421 248 282 701-2 Copyright © 2020 GOPAS, a.s.,

info@gopas.cz info@gopas.cz info@gopas.sk All rights reserved

SCALA_INTRO – Page 1/2 21/10/2025 02:24:59

https://www.gopas.eu/courses/SCALA_INTRO

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-

Lambdas
Wrapping primitive values into types instead of using them directly
implicit functions, conversions
implicit classes, method addition
default values
Try vs try
Chaining of potentially unsuccessful operations in the for loop, recover, orElse
Function with type parameter
Delimitation of types
Our own reducer

Asynchronous programming
Futures
Await.ready/result
Execution Context (global, fixed thread pool, cached, work stealing pool)
Future does not mean thread, What is a thread pool
map, flatMap, folding in the for loop
andThen, recover, transform
laziness

Language Scala - programming I

GOPAS Praha GOPAS Brno GOPAS Bratislava

Kodaňská 1441/46 Nové sady 996/25 Dr. Vladimíra Clementisa 10

101 00 Praha 10 602 00 Brno Bratislava, 821 02

Tel.: +420 234 064 900-3 Tel.: +420 542 422 111 Tel.: +421 248 282 701-2 Copyright © 2020 GOPAS, a.s.,

info@gopas.cz info@gopas.cz info@gopas.sk All rights reserved

SCALA_INTRO – Page 2/2 21/10/2025 02:24:59

https://www.gopas.eu/courses/SCALA_INTRO

